

Comparaison des communautés de Lépidoptères entre un milieu urbain en gestion différenciée et le milieu naturel

Présenté par : Chloé Duque - Jessica Giraldi - Louise Seguinel

M1 BEE - finalité ECOGEST (2018/2019)

Encadrants : Deschamps-Cottin Magali et Robles Christine

- Conclusion
- Urbanisation : cause majeure de la perte des habitats naturels
 - → Menace pour la biodiversité (Ramírez-Restrepo et MacGregor-Fors, 2016)

- Urbanisation : cause majeure de la perte des habitats naturels
 - → Menace pour la biodiversité (Ramírez-Restrepo et MacGregor-Fors, 2016)
- Déclin de la biodiversité, en particulier des papillons de jour « indicateurs biologiques des changement rapides de l'environnement » (Lizée et al., 2011)

- Urbanisation : cause majeure de la perte des habitats naturels
 - → Menace pour la biodiversité (Ramírez-Restrepo et MacGregor-Fors, 2016)
- Déclin de la biodiversité, en particulier des papillons de jour
 « indicateurs biologiques des changement rapides de l'environnement » (Lizée et al., 2011)
- Lépidoptères dans les villes :

- Homogénéisation des communautés
- Déclin de la périphérie vers le centre
- Cas de Marseille : gradient d'espèces méditerranéennes

- Urbanisation : cause majeure de la perte des habitats naturels
 - → Menace pour la biodiversité (Ramírez-Restrepo et MacGregor-Fors, 2016)
- Déclin de la biodiversité, en particulier des papillons de jour
 « indicateurs biologiques des changement rapides de l'environnement » (Lizée et al., 2011)
- Lépidoptères dans les villes :

- Homogénéisation des communautés
- Déclin de la périphérie vers le centre
- Cas de Marseille : gradient d'espèces méditerranéennes
- Le PUP (2012) : attirer et maintenir les papillons en ville
 → Gestion différenciée

Résultats et discussion

Conclusion

• 2010 - 2018 : suivis des communautés au PUP

méthodes

2010 - 2018 : suivis des communautés au PUP

PUP: 17 → 31 espèces

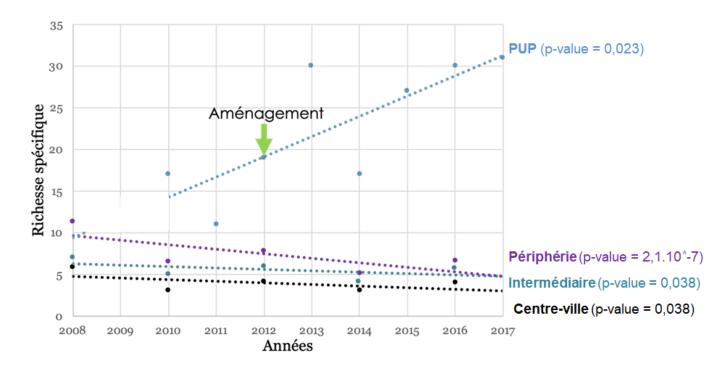


Fig. 1 : Richesse spécifique des papillons dans les parcs urbains de Marseille (Ternisien M., 2018)

2010 - 2018 : suivis des communautés au PUP

PUP: 17 → 31 espèces

→ Tendance inverse dans les parcs urbains à Marseille

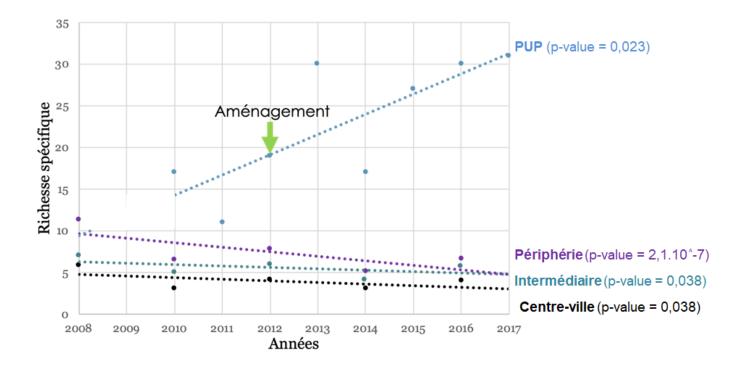


Fig. 1 : Richesse spécifique des papillons dans les parcs urbains de Marseille (Ternisien M., 2018)

Matériels et méthodes

Introduction

Résultats et discussion

Conclusion

- Retrouve-t-on les mêmes espèces dans le milieu naturel ?
- **2018**: sélection d'un "milieu naturel témoin" → Friche

Comparaison des communautés de Lépidoptères entre un milieu urbain en gestion différenciée et un milieu naturel

1. L'abondance, la richesse spécifique et la composition des communautés de Lépidoptères varient-elles entre les deux sites ?

Comparaison des communautés de Lépidoptères entre un milieu urbain en gestion différenciée et un milieu naturel

- 1. L'abondance, la richesse spécifique et la composition des communautés de Lépidoptères varient-elles entre les deux sites ?
- 2. Un effet temporel sur les communautés est-il visible ?

Comparaison des communautés de Lépidoptères entre un milieu urbain en gestion différenciée et un milieu naturel

- 1. L'abondance, la richesse spécifique et la composition des communautés de Lépidoptères varient-elles entre les deux sites ?
- 2. Un effet temporel sur les communautés est-il visible ?
- 3. Peut-on mettre en évidence des espèces "discriminantes" ?

Matériels et méthodes

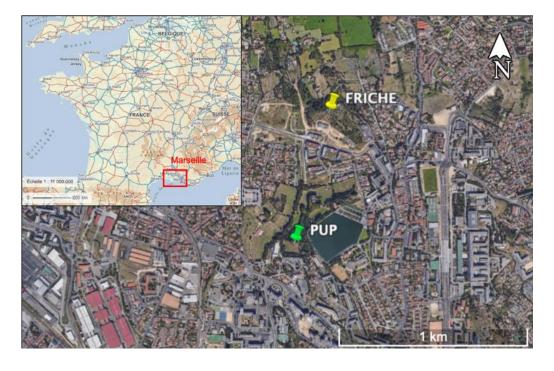


Fig. 2 : Carte représentant la position des deux sites d'étude à Marseille et la position par rapport à la France. Fonds de cartes : Google Earth

Introduction

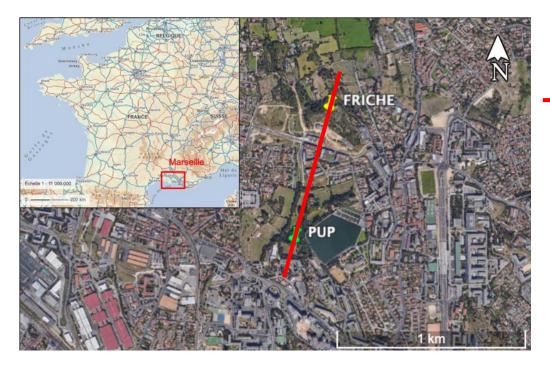
PUP

Ancienne friche agricole d'environ 1 hectare

Aménagement : 2012

Suivis: 2010

Introduction



FRICHE

Ancienne parcelle agricole d'environ 1 hectare

Aucune gestion

Suivis: 2018

Coupe topographique

(distance : environ 800m)

Fig. 2 : Carte représentant la position des deux sites d'étude à Marseille et la position par rapport à la France. Fonds de cartes : Google Earth

Protocole d'échantillonnage standardisé

→ 1h par semaine

Introduction

- → Trajet aléatoire
- → Captures au filet + mise en papillote
- → Comptage, détermination et relâche
- → Conditions météorologiques standardisées

09 Mai - 22 Août 2018

Traitement des données pour les Lépidoptères

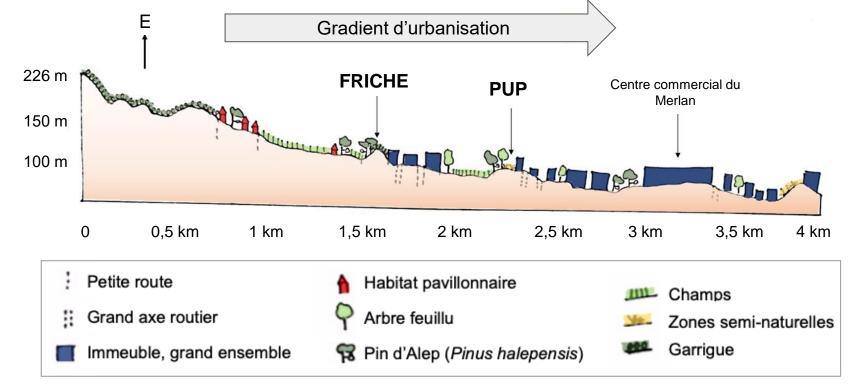
- **Boxplots:** richesse spécifique, abondance, indices (Shannon, Simpson et Piélou) + Test de Wilcoxon-Mann-Whitney
- **Diagrammes en bâtons :** abondance (totale et mensuelle) et richesse spécifique (mensuelle) + Test de Tukey
- **AFC**: les 16 relevés en fonction des 2 sites pour toutes les espèces de papillons → composition des communautés pour les 2 sites
- Tests de Wilcoxon-Mann-Whitney: mise en évidence d'espèces discriminantes entre les deux sites

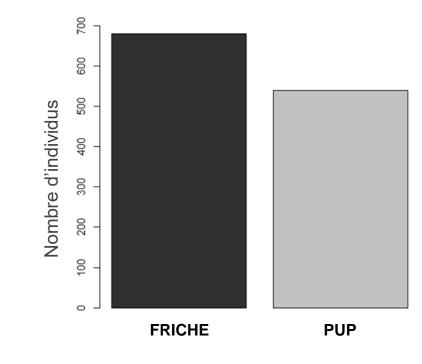
Typologie des milieux

- Points GPS: délimitation du contour de chaque site et de chaque type de milieu + cartographie avec QGIS
- **Diagramme en bâtons :** proportion (%) de chaque type de milieu
- Relevé floristique : présence/absence sur les deux sites

Résultats et discussion

Caractérisation des sites

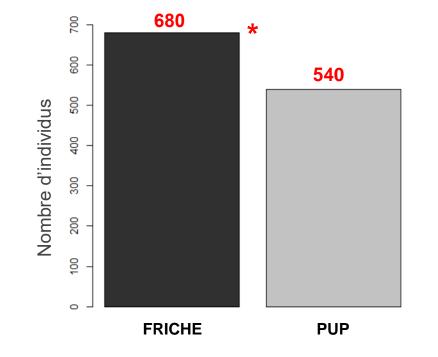



Fig. 3 : Coupe topographique représentant la Friche et le PUP

Introduction

Seule l'abondance est significative

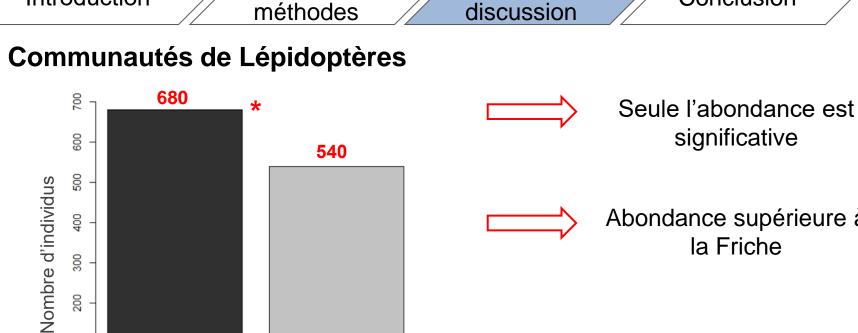
Introduction



Seule l'abondance est significative

Fig. 4 : Abondance totale sur les deux sites (mai - août 2018)

Seule l'abondance est


Communautés de Lépidoptères

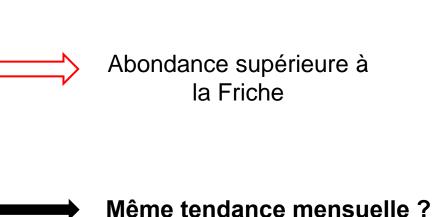
significative

Fig. 4 : Abondance totale sur les deux sites (mai - août 2018)

PUP

Matériels et

Introduction


400

300

200

100

Résultats et

Conclusion

significative

(13)

Fig. 4: Abondance totale sur les deux sites (mai - août 2018)

FRICHE

Matériels et

méthodes

Communautés de Lépidoptères

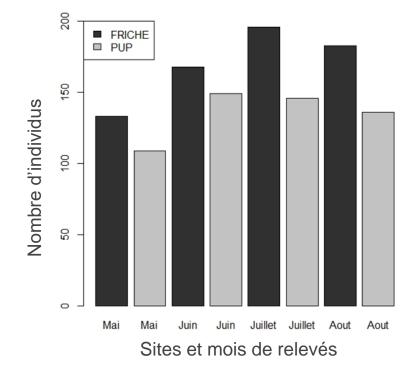
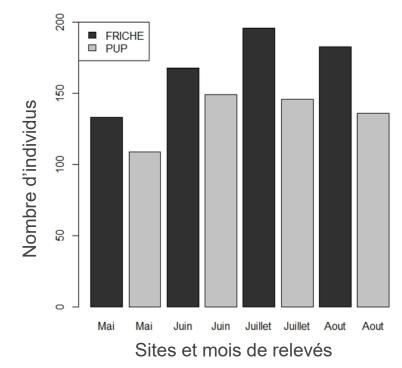
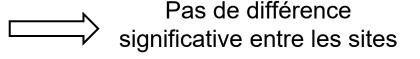
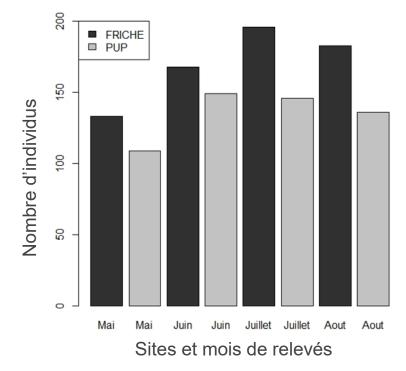
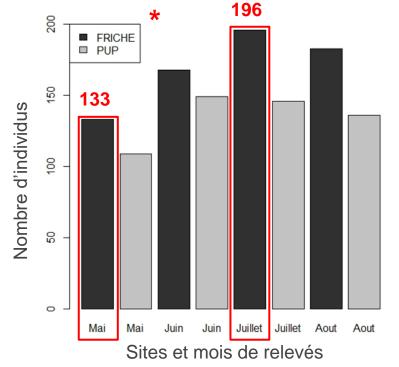



Fig. 5 : Abondance mensuelle sur les deux sites (mai - août 2018)


Fig. 5 : Abondance mensuelle sur les deux sites (mai - août 2018)

Pas de différence significative entre les sites

Pas de différence significative entre les mois pour le PUP

Fig. 5 : Abondance mensuelle sur les deux sites (mai - août 2018)

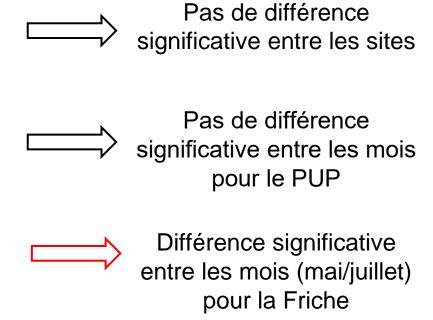
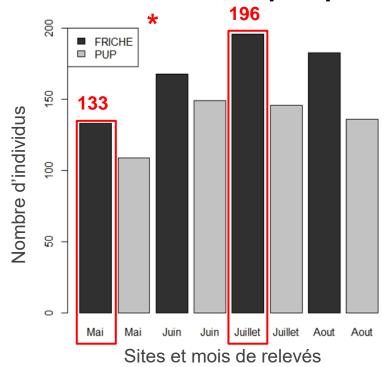



Fig. 5 : Abondance mensuelle sur les deux sites (mai - août 2018)

Introduction

Différence significative due à l'abondance d'une seule espèce

- → Pyronia cecilia tire les relevés vers le haut
 - Aucun individu sur 133 en mai
 - 85 individus sur 196 en juillet

Fig. 5 : Abondance mensuelle sur les deux sites (mai - août 2018)

Introduction

09 mai - 22 août 2018



Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

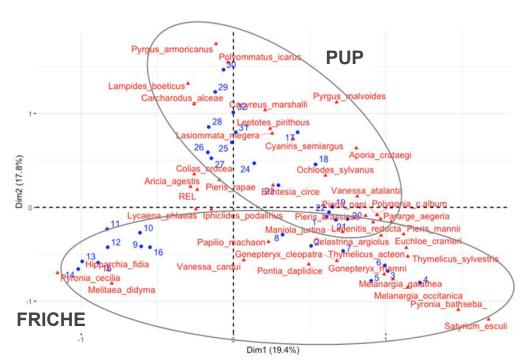


Tableau 1 : Dates des relevés entre les deux sites (2018)

Date	Friche	PUP
09/05/2018	1	17
16/05/2018	2	18
23/05/2018	3	19
29/05/2018	4	20
05/06/2018	5	21
12/06/2018	6	22
19/06/2018	7	23
25/06/2018	8	24
05/07/2018	9	25
10/07/2018	10	26
17/07/2018	11	27
24/07/2018	12	28
01/08/2018	13	29
07/08/2018	14	30
16/08/2018	15	31
22/08/2018	16	32

Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

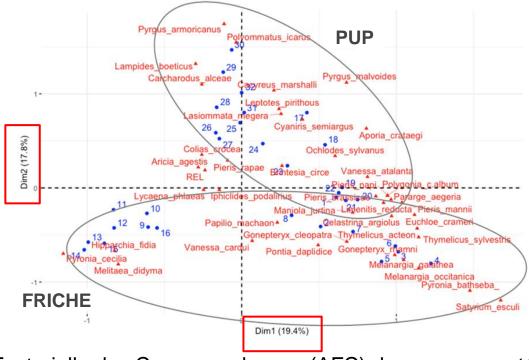


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

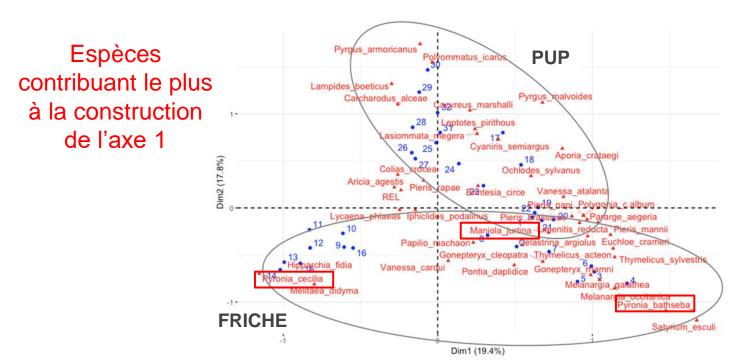


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

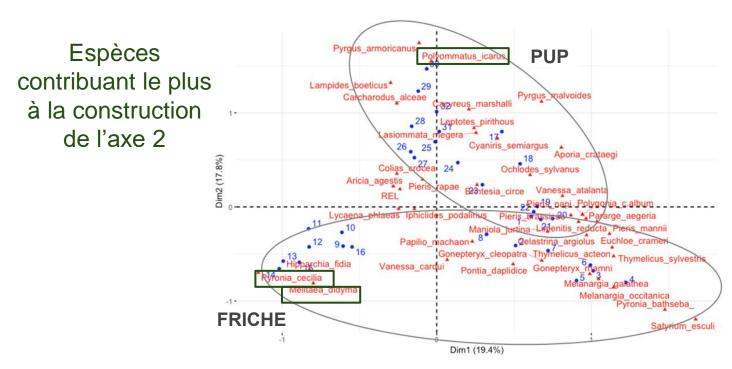


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

Relevés contribuant le plus à la construction de l'axe 1

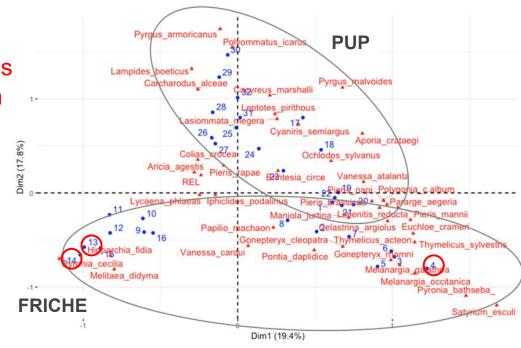


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

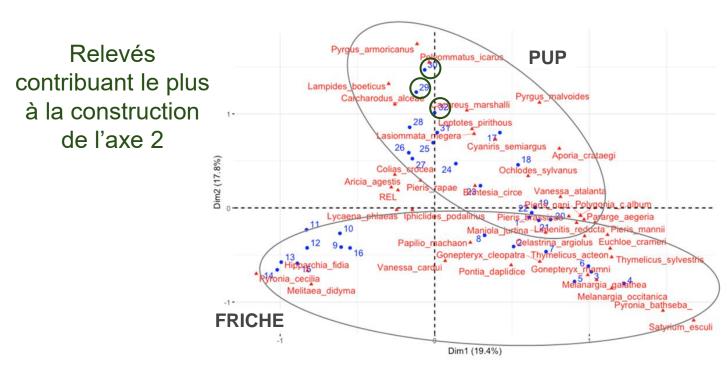
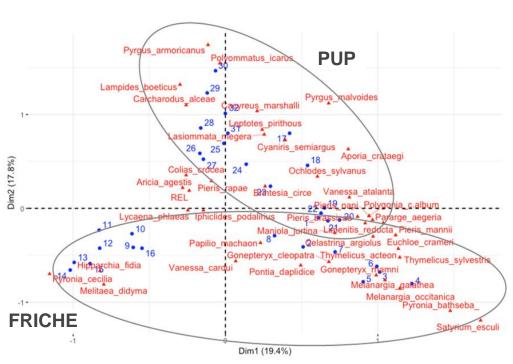



Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

Introduction

Variation de la composition des communautés de Lépidoptères

Entre sites

Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

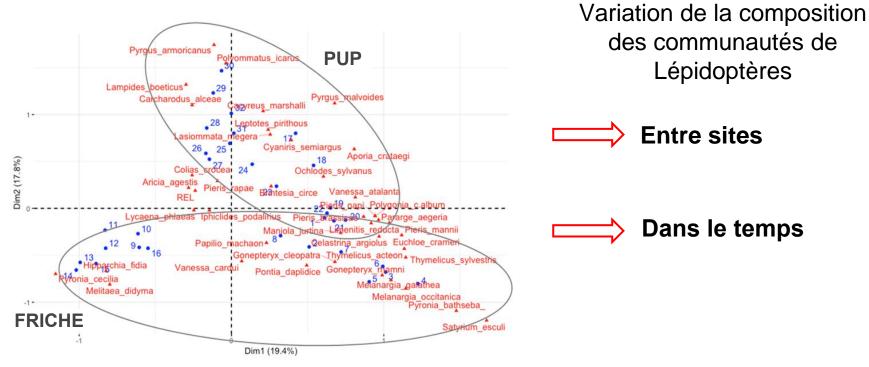


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

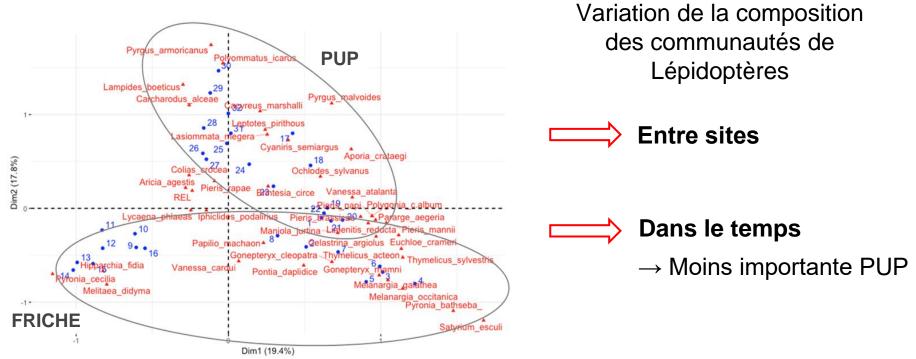


Fig. 6 : Analyse Factorielle des Correspondances (AFC) des communautés de Lépidoptères en fonction des relevés sur les deux sites (mai - août 2018)

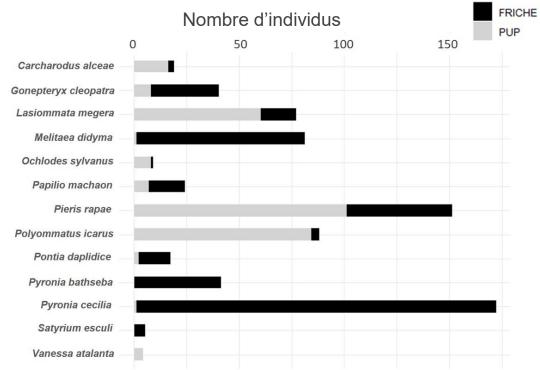
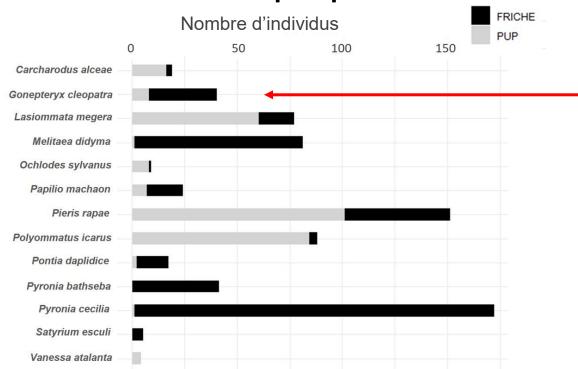
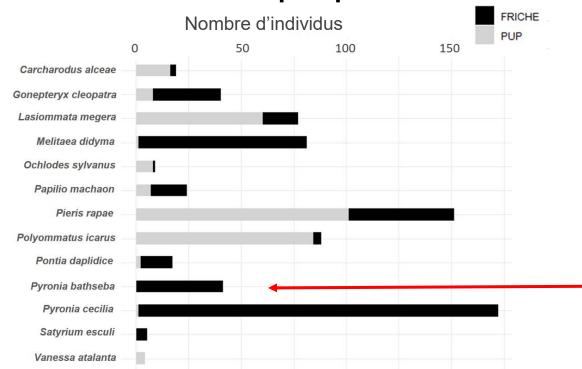



Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

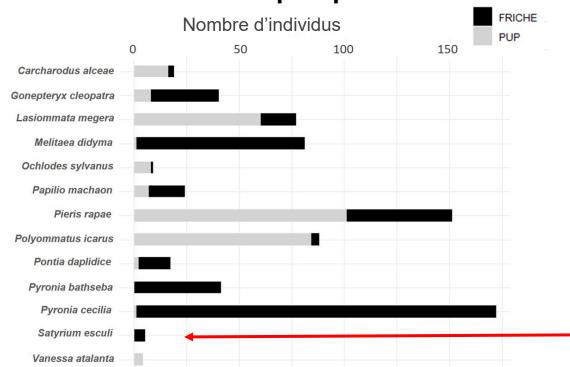


Gonepteryx cleopatra

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Introduction

Pyronia bathseba


Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Pyronia cecilia

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Satyrium esculi

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Introduction

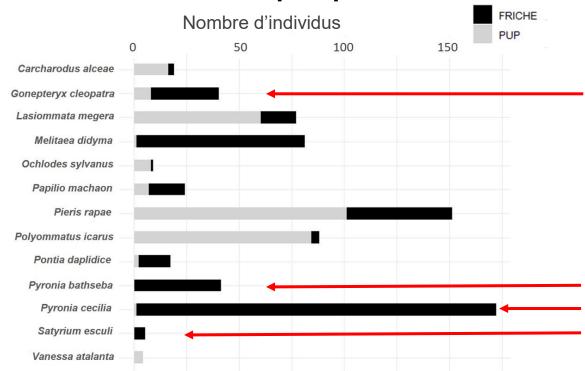


Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Friche

espèces méditerranéennes, uni/bivoltines et oligophages

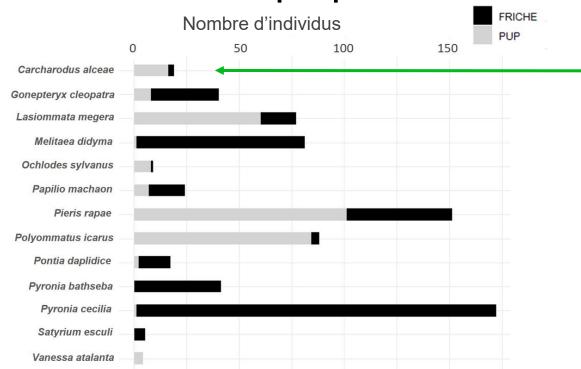
Introduction

SAUF

Melitaea didyma

Large répartition

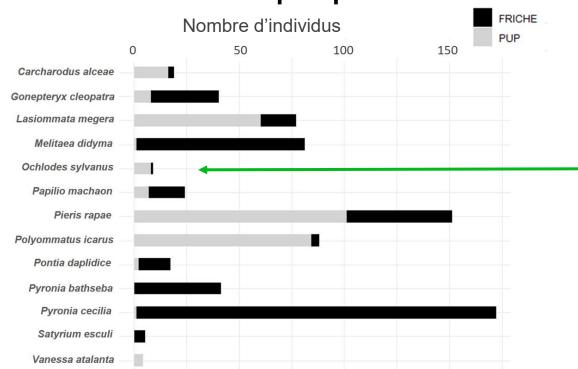
→ affectionne milieux secs


Pontia daplidice

Large répartition

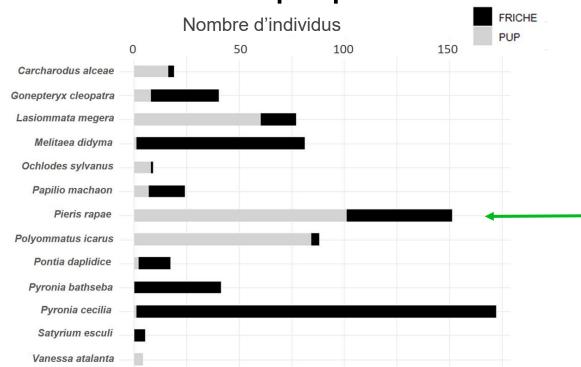
→ plantes hôtes moins présentes au PUP

Introduction



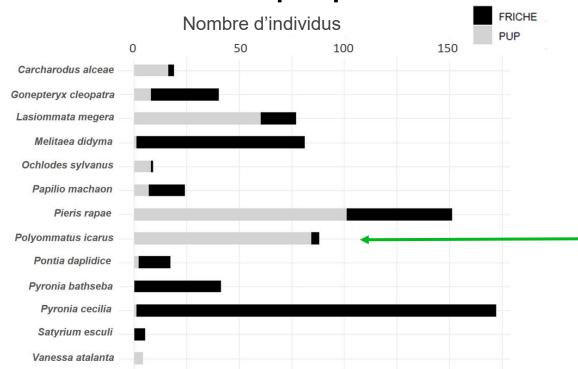
Carcharodus alceae

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)


Introduction

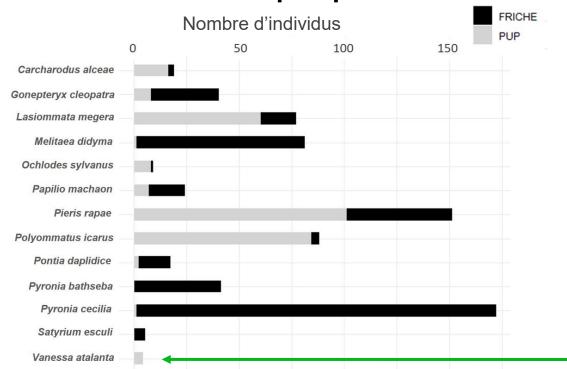
Ochlodes sylvanus

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)



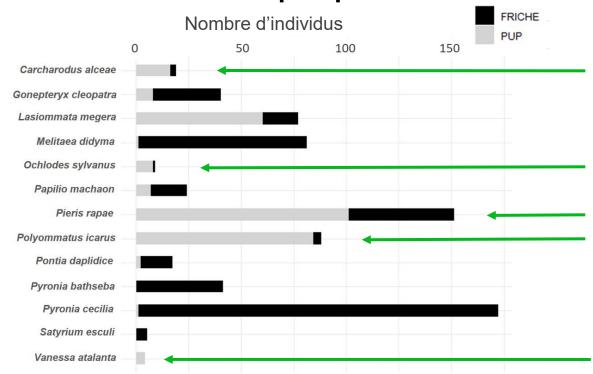
Pieris rapae

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)


Introduction

Polyommatus icarus

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)



Vanessa atalanta

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Introduction

espèces à large répartition, polyphages et généralement polyvoltines

PUP

Fig. 7 : Diagramme de l'abondance totale des 13 espèces jugées discriminantes sur les deux sites (mai - août 2018)

Introduction

SAUF
Lasiommata megera

Espèce oligophage

→ affectionne milieux ouverts

Typologie des milieux

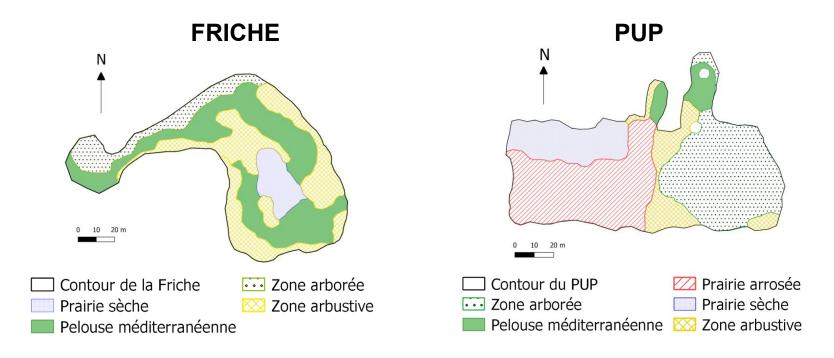


Fig. 8 : Cartographie des sites et des types de milieux pour la Friche (gauche) et le PUP (droite), effectuée à l'aide du logiciel QGIS

Typologie des milieux

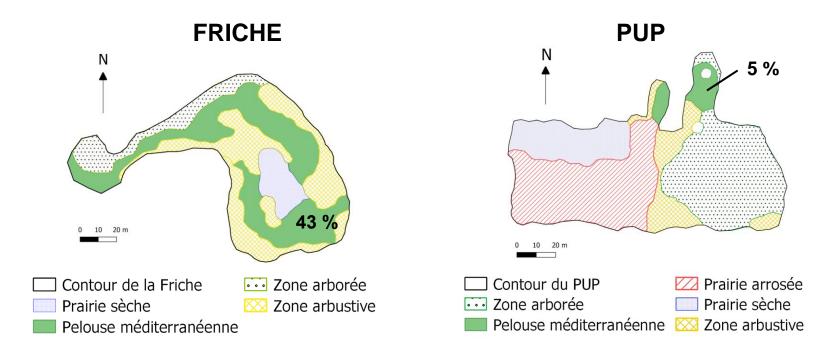


Fig. 8 : Cartographie des sites et des types de milieux pour la Friche (gauche) et le PUP (droite), effectuée à l'aide du logiciel QGIS

Typologie des milieux

→ Les espèces les plus présentes à la Friche sont méditerranéennes

Gonepteryx cleopatra

Pyronia bathseba

Pyronia cecilia

Satyrium esculi

→ Pelouse méditerranéenne Friche > Pelouse méditerranéenne PUP

Conclusion

Différences d'abondance, de richesse spécifique et de composition?

- Abondance totale significativement différente
- Composition différente (AFC)

1. Différences d'abondance, de richesse spécifique et de composition ?

- Abondance totale significativement différente
- Composition différente (AFC)

- → Augmentation du nombre d'espèces au PUP depuis 2010
- → Ne reflète pas le milieu naturel car abondance et composition différentes

- 2. Variation temporelle dans les communautés ?
 - Abondance significativement différente entre mai et juillet à la Friche
 - Variation temporelle dans la composition des communautés (AFC)

Variation temporelle dans les communautés ? 2.

- Abondance significativement différente entre mai et juillet à la Friche
- Variation temporelle dans la composition des communautés (AFC)

- → Différence d'abondance mensuelle due à une seule espèce
- → L'arrosage semble maintenir les communautés du PUP (AFC)
- → Perspective : suivis phénologiques des espèces en fleurs

3. Espèces témoins de différences significatives entre les deux sites?

- 13 espèces discriminantes
- PUP : large répartition, polyvoltines et polyphages
- Friche: méditerranéennes, uni/bivoltines et oligophages

Espèces témoins de différences significatives entre les deux 3. sites?

- 13 espèces discriminantes
- PUP : large répartition, polyvoltines et polyphages
- Friche: méditerranéennes, uni/bivoltines et oligophages
- → Abondance dépend de la structure des milieux et des traits fonctionnels
- → Espèces méditerranéennes semblent liées à la pelouse méditerranéenne
- → Perspective : élargir à d'autres traits ?

Pour aller plus loin:

- Poursuivre la récolte des données
- Répliquer le dispositif expérimental
 - → Repenser la structure des milieux
 - → Repenser le rôle de l'arrosage

Bibliographie (1/6)

- **Altermatt, F. (2012).** Temperature-related shifts in butterfly phenology depend on the habitat. *Global Change Biology*, vol. 18, n°8, p. 2429–2438.
- **Atauri, J.A., et de Lucio, J.V. (2001).** The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. *Landscape Ecology*, vol.16, p.147–159.
- Bergerot, B., Fontaine, B., Renard, M., Cadi, A., et Julliard, R. (2010). Preferences for exotic flowers do not promote urban life in butterflies. *Landscape and Urban Planning*, vol. 96, n°2, p. 98–107.
- Clergeau, P. et Blanc, N., 2013. Trames vertes urbaines, de la recherche scientifique au projet urbain. Editions Le Moniteur (Paris, France).
- **Dozières, A., Valarcher, J., et Clément, Z. (2017).** Papillons des jardins, des prairies et des champs : Guide de terrain pour les Observatoires de sciences participatives.
- **Dumé, G., Gauberville, C., Mansion, D., et Rameau, J.-C. (2018).** Flore forestière française 1 : Plaines et collines.

Bibliographie (2/6)

- **Foucart, F., et Morando, M. (2018).** Papillons en ville, leur diversité provient-elle de la présence de leur plante hôte ? Laboratoire Population Environnement Développement. Mémoire de Master I "Biodiversité Écologie Évolution", Aix-Marseille Université (France).
- Haidar, I.K.A., Rahman, M.M., Ahsan, M.F., et Islam, M.A. (2017). Status, abundance and habitat preference of butterflies (Insecta: Lepidoptera) in Chittagong University Campus (Chittagong, Bangladesh). *Journal of Threatened Taxa*, vol. 9, n°3, p. 9988–10003.
- **Hunter, M.D., et McNeil, J.N. (1997).** Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore. *Ecology (Ecological Society Of America),* vol. 78, n°4, p.977–990.
- **Jaulin, S., et Baillet, Y. (2007).** Identification et suivi des peuplements de Lépidoptères et d'Orthoptères sur l'ENS du Col du Coq Pravouta. Rapport d'étude de l'OPIE-LR (Perpignan, France). 107p.
- **Lafranchis, T. (2014).** Papillons de France : guide de détermination des papillons diurnes (rhopalocères, zygènes et hétérocères diurnes).
- Lafranchis, T., Jutzeler, D., Guillosson, J.-Y., Kan, P., et Kan, B. (2015). La vie des papillons : écologie, biologie et comportement des Rhopalocères de France.

Bibliographie (3/6)

Lizée, M.H. (2011). Diversité, organisation spatiale et fonctionnelle des communautés de papillons (lépidoptères, rhopalocères) en milieu urbain et périurbain : Rôle des espaces artificialisés en termes de conservation et de connectivité. Thèse de doctorat, Aix-Marseille Université (France).

Lizée, M.-H., Bonardo, R., Mauffrey, J.-F., Bertaudière-Montes, V., Tatoni, T., et Deschamps-Cottin, M. (2011). Relative importance of habitat and landscape scales on butterfly communities of urbanizing areas. *Comptes Rendus Biologies*, vol. 334, p.74–84.

Lizée, M.H, Bourdil, C., Barthélémy, C., et Deschamps-Cottin, M. (2014). Approche socioécologique des parcs publics Marseillais. *Méditerranée*, Presses universitaires de Provence, 2015, n°123, p.123-132

Marteau, S. (2017). Impacts des éléments du paysage sur les communautés végétales des haies. Mémoire de Master II pro. "Espace Rural et Environnement", Université Bourgognes Franche-Comté (France).

McIntyre, S. & Barrett, G. W. (1992). Habitat Variegation, An Alternative to Fragmentation. *Conservation Biology*, vol.6, n°1, p. 146-147.

Bibliographie (4/6)

- Olivier, T., Schmucki, R., Fontaine, B., Villemey, A., et Archaux, F. (2016). Butterfly assemblages in residential gardens are driven by species habitat preference and mobility. *Landscape Ecology*, vol. 31, n°4, p. 865–876.
- **Ouin, A., Paillisson, J.-M., et Lhonoré, J. (2000).** Méthode de suivi et d'évaluation des populations et peuplements de papillons de jour. *Insectes*, n°117.
- Ramírez-Restrepo, L., et MacGregor-Fors, I. (2016). Butterflies in the city: a review of urban diurnal Lepidoptera. *Urban Ecosystems*, vol. 20, n°1, p. 171–182.
- Rastandeh, A., Brown, D.K., et Pedersen Zari, M. (2017). Biodiversity conservation in urban environments: a review on the importance of spatial patterning of landscapes. Conference in Melbourne (Australia).
- **Rouadjia, A. (2017).** Le paradoxe de la gestion des espaces verts : entre volonté de maîtrise et laissez-faire : Résistances au changement et logiques de priorités à Marseille. VertigO, la revue électronique en sciences de l'environnement, n°28 (hors-série).

Bibliographie (5/6)

Schtickzelle, N., Choutt, J., Goffart, P., Fichefet, V., et Baguette, M. (2014). Metapopulation dynamics and conservation of the marsh fritillary butterfly: Population viability analysis and management options for a critically endangered species in Western Europe. *Biological conservation*, vol. 126, n°4, p.569-581.

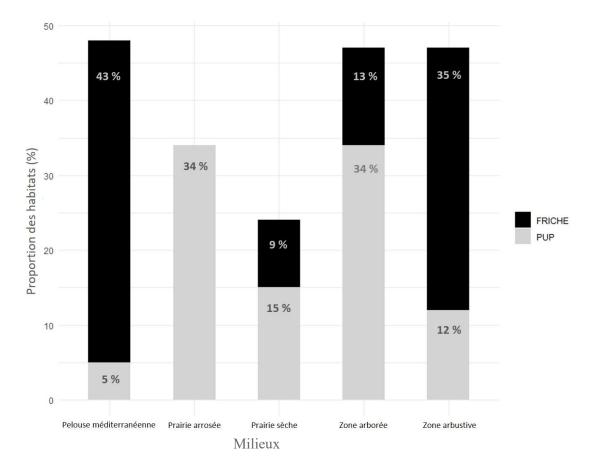
Shapiro, A.M. (2002). The Californian urban butterfly fauna is dependent on alien plants. *Diversity and Distribution*, vol. 8, p.31–40.

Sweaney, N., Lindenmayer, D.B., et Driscoll, D.A. (2014). Is the matrix important to butterflies in fragmented landscapes? Journal of Insect Conservation vol. 18, n°3, p. 283–294.

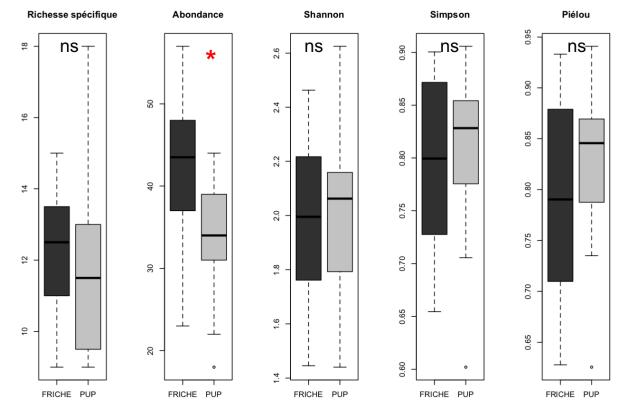
Tam, K.C., et Bonebrake, T.C. (2016). Butterfly diversity, habitat and vegetation usage in Hong Kong urban parks. *Urban Ecosystems*, vol. 19, n°2, p. 721–733.

Ternisien, M. (2018). Gradients d'urbanisation et suivi à long terme : quels apports pour la structuration spatio-temporelle des communautés de Rhopalocères en milieu urbain ? Mémoire de Master II Recherche, Parcours "Biodiversité, Écologie, Évolution". Aix-Marseille Université (France).

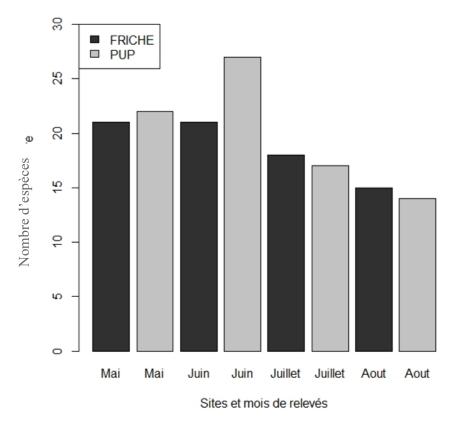
Tison, J.-M., Jauzein, P., et Michaud, H. (2014). Flore de la France méditerranéenne continentale. Naturalia Publications (France).


Bibliographie (6/6)

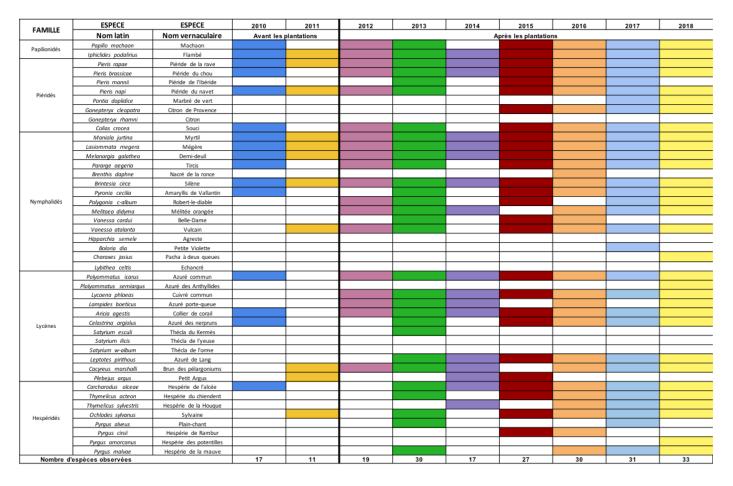
Villemey, A. (2015). Trame verte et papillons de jour en contexte agricole : influence du paysage sur la dispersion, la diversité génétique et la composition des communautés. Sciences agricoles. Université d'Orléans (France).

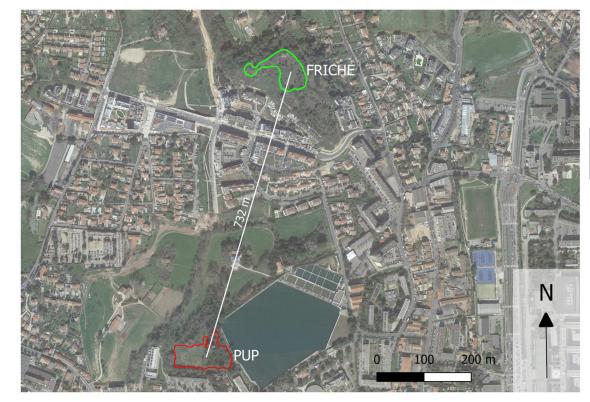

Vuilleumier, F. (1973). Rapports entre l'écologie et la génétique des populations. *Station de Biologie Marine*, vol. 2, 179–226.

Wintle, B.A. *et al.* **(2019).** Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. *Proceedings of the National Academy of Sciences*, vol. 116, n°3, p. 909–914.



Annexe I : Diagramme en bâtons représentant la proportion (en %) des cinq types de milieux pour chaque site en 2019

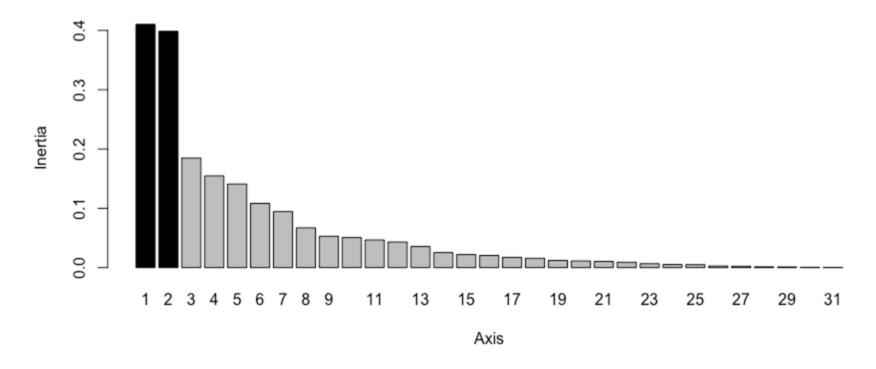

Annexe II : Boxplots représentant la richesse spécifique, l'abondance ainsi que les indices de Shannon, Simpson et Piélou en 2018. Le résultat significatif est marqué par une étoile, ceux non significatifs avec ns.


Annexe III : Diagramme en bâtons de la richesse spécifique mensuelle sur les deux sites en 2018

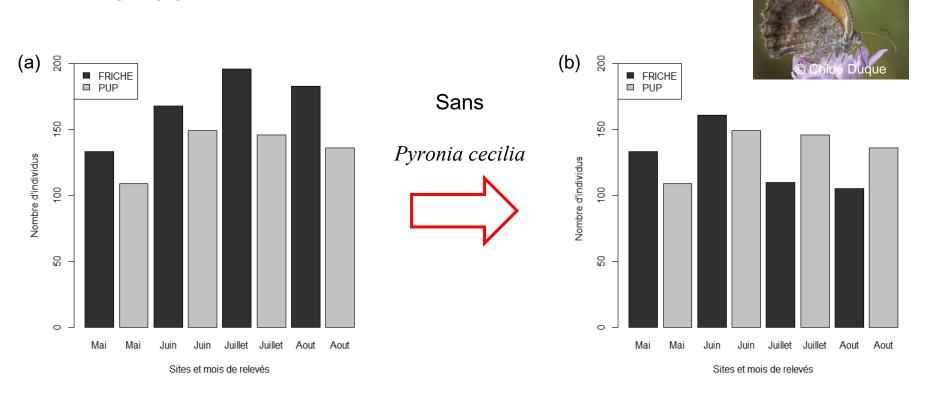
Espèce		Régime alimentaire	Phénologie
Hespérie de l'alcée (Carcharodus alceae)	PUP	Polyphage	Polyvoltine
Citron de Provence (Gonepteryx cleopatra)	Friche	Oligophage	Uni- bivoltine
Mégère (Lasiommata megera)	PUP	Oligophage	Polyvoltine
Mélitée orangée (<i>Melitaea didyma</i>)	Friche	Polyphage	Uni- bivoltine
Sylvaine (Ochlodes sylvanus)	PUP	Polyphage	Uni- bivoltine
Machaon (<i>Papilio machaon</i>)	Friche	Polyphage	Polyvoltine
Piéride de la rave (<i>Pieris rapae</i>)	PUP	Polyphage	Polyvoltine
Azuré commun (Polyommatus icarus)	PUP	Polyphage	Polyvoltine
Marbré de vert (<i>Pontia daplidice</i>)	Friche	Polyphage	Polyvoltine
Tityre (Pyronia bathseba)	Friche	Oligophage	Uni- bivoltine
Amaryllis de Vallantin (<i>Pyronia cecilia</i>)	Friche	Oligophage	Uni- bivoltine
Thècle du kermès (Satyrium esculi)	Friche	Oligophage	Uni- bivoltine
Vulcain (Vanessa atalanta)	PUP	Polyphage	Uni- bivoltine

Annexe IV : Tableau représentant les traits fonctionnels des 13 espèces discriminantes sur les deux sites en 2018 (d'après Lizée, 2011 ; Lafranchis et *al.*, 2015). Oligophage : une seule famille de plantes hôtes. Polyphage : plantes hôtes appartenant à plusieurs familles.

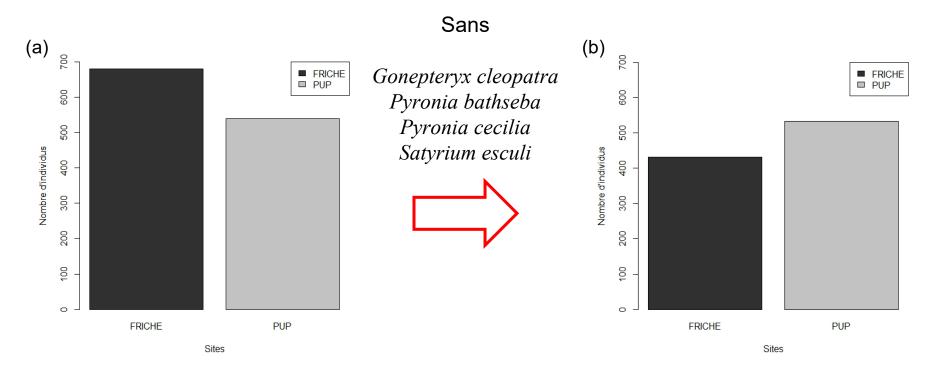
Annexe V: Résultats du PUP (2010 à 2018)


NOM AIRE UNITE Pup 8024 m2 Friche 7076 m2

Annexe VI : Carte représentant la position des deux sites d'étude, leur aire respective ainsi que la distance qui les sépare l'un de l'autre.

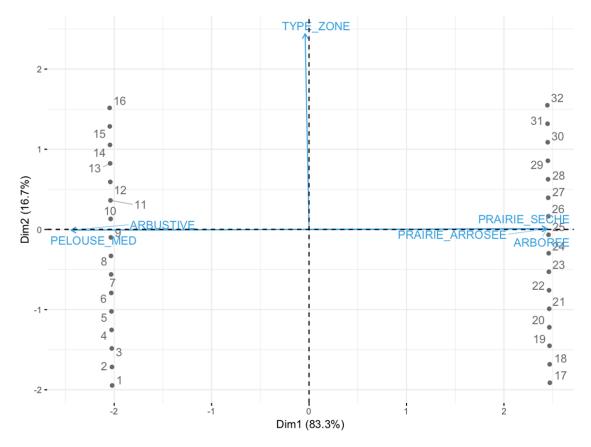

Genre	Espèce	Famille	Friche	PUP
Achillea	millefolium	Asteraceae		1
Ajuga	reptans	Lamiaceae		1
Allium	neapolitanum	Amaryllidaceae	1	
Amaryllidaceae	sp.	Amaryllidaceae	1	
Anagallis	foemina	Primulaceae		1
Anthericum	liliago	Asparagaceae	1	
Anthyllis	vulneraria	Fabaceae		1
Aphyllantes	monspeliensis	Liliaceae	1	
Arbustus	unedo	Ericaceae	1	1
Asparagus	acutifolius	Asparagaceae	1	
Avena	sterilis	Poaceae	1	1
Avena	strigosa subsp. barbata	Poaceae	1	1
Brachypodium	retusum	Poaceae	1	
Brachypodium	sp.	Poaceae	1	
Bromus	sp.	Poaceae		1
Carduus	pycnocephalus	Asteraceae	1	1
Carduus	sp.	Asteraceae	1	
Carex	sempervirens	Cyperaseae	1	
Celtis	australis	Cannabaceae	1	
Centranthus	ruber	Caprifoliaceae	1	
Cercis	siliquastrum	Fabaceae	1	
Cistus	albidus	Cistaceae	1	
Clematis	flammula	Ranunculaceae	1	
Convolvulus	sp.	Convolvulaceae		1
Coronilla	juncea	Fabaceae	1	
Crataegus	monogyna	Rosaceae	1	
Crataegus	sp.	Rosaceae	1	
Dactylis	glomerata	Poaceae	1	1
Echium	vulgare	Boraginaceae	1	
Erodium	cicutarium subsp. cicutarium	Geraniaceae	1	
Eryngium	campestre	Apiaceae	1	
Euphorbia_	helioscopia	Euphorbiaceae	1	
Euphorbia	serrata	Euphorbiaceae	1	
Euphorbia	peplus	Euphorbiaceae	1	
Evax	pygmaea	Asteraceae	1	
Fallopia	convolvulus	Polygonaceae	1	
Ficus	benjamina	Moraceae	1	
Foeniculum	vulaare	Apiaceae	1	
Fraxinus	ornus	Oleaceae	1	1
Fraxinus	excelsior	Oleaceae	1	1
Galium		Rubiaceae		1
Geranium	aparine subsp. aparine rotundifolium		1	1
Geranium	molle	Geraniaceae Geraniaceae	1	1
Himentoglossum	robertianum	Orchidaceae	1	1
Hypericum		Clusiaceae	1	
	sp.			
Iris	germanica	Iridaceae	1	
Jasminum	fruticans	Oleaceae	1	
Jasminum	officinalis	Oleaceae	1	
Lamium	sp.	Lamiaceae		1
Lepidium	draba	Brassicaceae	1	
Ligustrum	vulgare	Oleaceae	1	
Lobularia	maritima	Brassicaceae	1	

Genre	Espèce	Famille	Friche	PUP
Malva	arborea	Malvaceae		1
Malva	sylvestris	Malvaceae	1	
Marrubium	vulgare	Lamiaceae		1
Medicago	sp.	Fabaceae		1
Muscari	comosum	Asparagaceae	1	
Muscari	neglectum	Asparagaceae	1	
Olea	europaea	Oleaceae	1	
Ophrys	arachniformis	Orchidaceae	1	
Ornithogalum	umbellatum	Hyacinthceae	1	
Pallenis	spinosa	Asteraceae	1	
Papaver	dubium	Papaveraceae	1	
Papaver	rhoeas	Papaveraceae	1	
Parietaria	judaica	Urticaceae		1
Philadelphus	sp.	Hydrangeaceae	1	
Phillyrea	angustifolia	Oleaceae	1	
Pinus	halepensis	Pinaceae	1	
Piptatherum	miliaceum	Poaceae	1	
Pistacia	terebinthus	Anacardiaceae	1	
Plantago	lanceolata	Plantaginaceae	1	1
Plantago	sp.	Plantaginaceae	1	
Potentilla	sp.	Rosaceae		1
Potentilla	reptans	Rosaceae		1
Prunus	sp.	Rosaceae		1
Prunus	dulcis	Rosaceae	1	
Psoralea	bituminosa	Fabaceae	1	
Quercus	coccifera	Fagaceae	1	
Quercus	ilex	Fagaceae	1	
Quercus	pubescens	Fagaceae	1	
Ranunculus	sp.	Renonculaceae		1
Raphanus	raphanistrum	Brassicaceae		1
Rhamnus	alaternus	Rhamnaceae	1	
Rhaphanus	raphanistrum	Brassicaceae	1	
Robinia	pseudoacacia	Fabaceae	1	
Rosmarinus	officinalis	Lamiaceae	1	
Rubia	peregrina	Rubiaceae	1	
Rubus	sp.	Rosaceae	1	
Salvia	verbenaca	Lamiaceae		1
Salvia	sp.	Lamiaceae	1	
Scabiosa	sp.	Caprifoliaceae	1	
Sedum	sediforme	Crassulaceae	1	
Sherardia	arvensis	Rubiaceae	1	
Silene	latifolia	Caryophyllaceae		1
Silene	sp.	Caryophyllaceae	1	
Smilax	aspera	Smilacaceae	1	
Spartium	junceum	Fabaceae	1	
Tragopogon	porrifolius	Asteraceae	1	
Trifolium	pratense	Fabaceae		1
Trifolium	repens	Fabaceae		1
Ulex	parviflorus	Fabaceae	1	
Ulmus	sp.	Ulmaceae		1
Urospermum	dalechampii	Asteraceae	1	
Veronica	sp.	Scrophulariaceae	1	1
Viburnum	tinus	Adoxaceae	1	
Vicia	sp.	Fabaceae	1	

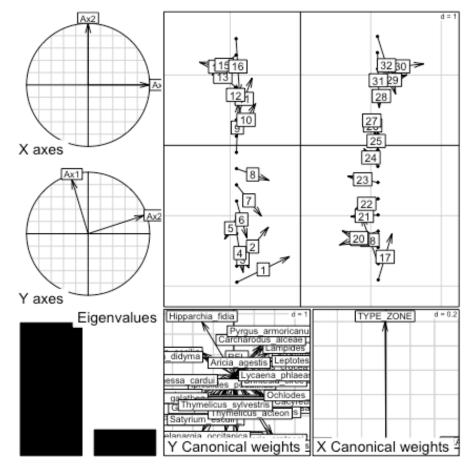

Annexe VII : Relevés floristiques effectuées en mai 2019 (1 = présence)

Annexe VIII : Pourcentages d'inertie expliqués par chacun des axes de l'AFC

Annexe IX : Diagrammes en bâtons de (a) Abondance mensuelle sur les deux sites en 2018 et (b) Abondance mensuelle sur les deux sites en 2018 sans *Pyronia cecilia*



Annexe X : Diagrammes en bâtons de (a) Abondance totale sur les deux sites en 2018 et (b) Abondance totale sur les deux sites en 2018 sans les espèces méditerranéennes


Nom latin	Nom vernaculaire	
Papilio machaon	Machaon	
Iphiclides podalirius	Flambé	
Pieris rapae	Piéride de la rave	
Pieris brassicae	Piéride du chou	
Pieris mannii	Piéride de l'Ibéride	
Pieris napi	Piéride du navet	
Pontia daplidice	Marbré de vert	
Gonepteryx cleopatra	Citron de Provence	
Gonepteryx rhamni	Citron	
Colias crocea	Souci	
Maniola jurtina	Myrtil	
Lasiommata megera	Mégère	
Melanargia galathea	Demi-deuil	
Pararge aegeria	Tircis	
Brenthis daphne	Nacré de la ronce	
Brintesia circe	Silène	
Pyronia cecilia	Amaryllis de Vallantin	
Polygonia c-album	Robert-le-diable	
Melitaea didyma	Mélitée orangée	
Vanessa cardui	Belle-Dame	
Vanessa atalanta	Vulcain	
Hipparchia semele	Agreste	
Boloria dia	Petite Violette	

Nom latin	Nom vernaculaire	
Charaxes jasius	Pacha à deux queues	
Lybithea celtis	Echancré	
Polyommatus icarus	Azuré commun	
Plolyommatus semiargus	Azuré des Anthyllides	
Lycaena phlaeas	Cuivré commun	
Lampides boeticus	Azuré porte-queue	
Aricia agestis	Collier de corail	
Celastrina argiolus	Azuré des nerpruns	
Satyrium esculi	Thécla du Kermès	
Satyrium ilicis	Thécla de l'yeuse	
Satyrium w-album	Thécla de l'orme	
Leptotes pirithous	Azuré de Lang	
Cacyreus marshalli	Brun des pélargoniums	
Plebejus argus	Petit Argus	
Carcharodus alceae	Hespérie de l'alcée	
Thymelicus acteon	Hespérie du chiendent	
Thymelicus sylvestris	Hespérie de la Houque	
Ochlodes sylvanus	Sylvaine	
Pyrgus alveus	Plain-chant	
Pyrgus cirsii	Hespérie de Rambur	
Pyrgus amorcanus	Hespérie des potentilles	
Pyrgus malvae	Hespérie de la mauve	

Annexe XI: Liste des 41 espèces échantillonnées en 2018

Annexe XII : Analyse en Composantes Principales (ACP) des proportions de structures de végétation en fonction des relevés sur les deux sites en 2018

Annexe XIII : Analyse de co-inertie des communautés de Lépidoptères avec les données de structure de végétation (couplage AFC/ACP), RV = 54%